Math 20E Review Problems for Sections 8.2, 8.3, and 8.4
 Summer Session II, 2015

1. Pictured is a cave whose only opening is the region in the y - z plane bounded by the y-axis, the z-axis, and the curve $z=\frac{2 y-1}{y-1}$. Consider the walls and floor of the cave as a surface S oriented by the inward pointing normal.

(a) Indicate the orientation of ∂S by drawing arrows on the above right figure.
(b) Let

$$
\overrightarrow{\mathbf{F}}(x, y, z)=z y \arctan \left(y^{2}\right) \overrightarrow{\mathbf{i}}+z y\left(y-1+x e^{\sin (x z)}\right) \overrightarrow{\mathbf{j}}+z y^{2}(y-1)^{3} \overrightarrow{\mathbf{k}}
$$

Use Stokes' Theorem to evaluate $\iint_{S}(\nabla \times \overrightarrow{\mathbf{F}}) \cdot d \overrightarrow{\mathbf{S}}$.
2. Let $\overrightarrow{\mathbf{F}}(x, y, z)=x z e^{-y} \overrightarrow{\mathbf{i}}+\left(z e^{-y}+y \sin z\right) \overrightarrow{\mathbf{j}}+\left(\cos z+\frac{x^{2}}{2} e^{-y}\right) \overrightarrow{\mathbf{k}}$.
(a) Find curl $\overrightarrow{\mathbf{F}}=\nabla \times \overrightarrow{\mathbf{F}}$ and $\operatorname{div} \overrightarrow{\mathbf{F}}=\nabla \cdot \overrightarrow{\mathbf{F}}$.
(b) Is there a vector field $\overrightarrow{\mathbf{G}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\overrightarrow{\mathbf{F}}=\nabla \times \overrightarrow{\mathbf{G}}$?
(c) Is there a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\overrightarrow{\mathbf{F}}=\nabla f$? If so, find f and evaluate $\int_{c} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}}$ where \boldsymbol{c} is the curve parametrized by

$$
\boldsymbol{c}(t)= \begin{cases}(t \cos t, t \sin t, t), & \text { for } \pi \leq t \leq 2 \pi \\ (t(\sin t+1), t(\cos t-1), t), & \text { for } 2 \pi \leq t \leq 3 \pi\end{cases}
$$

3. Redo the previous problem for

$$
\overrightarrow{\mathbf{F}}(x, y, z)=(y z+y) \overrightarrow{\mathbf{i}}+(x z+x) \overrightarrow{\mathbf{j}}+(x y+1) \overrightarrow{\mathbf{k}}
$$

(This was formerly a different vector field, but it was way too algebraically intense, for which I apologize. I will post the answer for the original $\overrightarrow{\mathbf{F}}$ as well, in case you did it already).
4. Consider the solid

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x \leq 1,0 \leq y \leq e^{x}, 0 \leq z \leq e^{x}\right\}
$$

and let $S=\partial W$ be the boundary of W. Let

$$
\overrightarrow{\mathbf{F}}(x, y, z)=-2 z e^{-2 x} \overrightarrow{\mathbf{i}}+\arctan \left(e^{x z}\right) \overrightarrow{\mathbf{j}}+3 z(1+y)^{1 / 2} \overrightarrow{\mathbf{k}}
$$

(a) Find $\nabla \cdot \overrightarrow{\mathbf{F}}$.
(b) Use Gauss' Divergence Theorem to evaluate $\iint_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$.

